root/branches/api-cleanup/src/libstreaming/motu/MotuTransmitStreamProcessor.cpp

Revision 809, 21.4 kB (checked in by ppalmers, 14 years ago)

First round of cleanup:
- make Ports auto-register to a PortManager?
- remove the different 'signal' types, everything is now period-signaled.
- removed obsolete streaming test programs

Line 
1 /*
2  * Copyright (C) 2005-2007 by Jonathan Woithe
3  * Copyright (C) 2005-2007 by Pieter Palmers
4  *
5  * This file is part of FFADO
6  * FFADO = Free Firewire (pro-)audio drivers for linux
7  *
8  * FFADO is based upon FreeBoB.
9  *
10  * This program is free software: you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 3 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
22  *
23  */
24
25 #include "config.h"
26
27 #include "MotuTransmitStreamProcessor.h"
28 #include "MotuPort.h"
29 #include "../StreamProcessorManager.h"
30 #include "devicemanager.h"
31
32 #include "libieee1394/ieee1394service.h"
33 #include "libieee1394/IsoHandlerManager.h"
34 #include "libieee1394/cycletimer.h"
35
36 #include <netinet/in.h>
37 #include <assert.h>
38
39 // Set to 1 to enable the generation of a 1 kHz test tone in analog output 1
40 #define TESTTONE 1
41
42 #if TESTTONE
43 #include <math.h>
44 #endif
45
46 namespace Streaming
47 {
48
49 // A macro to extract specific bits from a native endian quadlet
50 #define get_bits(_d,_start,_len) (((_d)>>((_start)-(_len)+1)) & ((1<<(_len))-1))
51
52 // Convert a full timestamp into an SPH timestamp as required by the MOTU
53 static inline uint32_t fullTicksToSph(int64_t timestamp) {
54     return TICKS_TO_CYCLE_TIMER(timestamp) & 0x1ffffff;
55 }
56
57 /* transmit */
58 MotuTransmitStreamProcessor::MotuTransmitStreamProcessor(FFADODevice &parent, unsigned int event_size )
59         : StreamProcessor(parent, ePT_Transmit )
60         , m_event_size( event_size )
61         , m_tx_dbc( 0 )
62 {}
63
64 unsigned int
65 MotuTransmitStreamProcessor::getMaxPacketSize() {
66     int framerate = m_Parent.getDeviceManager().getStreamProcessorManager().getNominalRate();
67     return framerate<=48000?616:(framerate<=96000?1032:1160);
68 }
69
70 unsigned int
71 MotuTransmitStreamProcessor::getNominalFramesPerPacket() {
72     int framerate = m_Parent.getDeviceManager().getStreamProcessorManager().getNominalRate();
73     return framerate<=48000?8:(framerate<=96000?16:32);
74 }
75
76 enum StreamProcessor::eChildReturnValue
77 MotuTransmitStreamProcessor::generatePacketHeader (
78     unsigned char *data, unsigned int *length,
79     unsigned char *tag, unsigned char *sy,
80     int cycle, unsigned int dropped, unsigned int max_length )
81 {
82     // The number of events per packet expected by the MOTU is solely
83     // dependent on the current sample rate.  An 'event' is one sample from
84     // all channels plus possibly other midi and control data.
85     signed n_events = getNominalFramesPerPacket();
86
87     // Do housekeeping expected for all packets sent to the MOTU, even
88     // for packets containing no audio data.
89     *sy = 0x00;
90     *tag = 1;      // All MOTU packets have a CIP-like header
91     *length = n_events*m_event_size + 8;
92
93     signed int fc;
94     uint64_t presentation_time;
95     unsigned int presentation_cycle;
96     int cycles_until_presentation;
97
98     uint64_t transmit_at_time;
99     unsigned int transmit_at_cycle;
100     int cycles_until_transmit;
101
102     // FIXME: should become a define
103     // the absolute minimum number of cycles we want to transmit
104     // a packet ahead of the presentation time. The nominal time
105     // the packet is transmitted ahead of the presentation time is
106     // given by MOTU_TRANSMIT_TRANSFER_DELAY (in ticks), but in case we
107     // are too late for that, this constant defines how late we can
108     // be.
109     const int min_cycles_before_presentation = 1;
110     // FIXME: should become a define
111     // the absolute maximum number of cycles we want to transmit
112     // a packet ahead of the ideal transmit time. The nominal time
113     // the packet is transmitted ahead of the presentation time is
114     // given by MOTU_TRANSMIT_TRANSFER_DELAY (in ticks), but we can send
115     // packets early if we want to. (not completely according to spec)
116     const int max_cycles_to_transmit_early = 2;
117
118     debugOutput ( DEBUG_LEVEL_ULTRA_VERBOSE, "Try for cycle %d\n", cycle );
119     // check whether the packet buffer has packets for us to send.
120     // the base timestamp is the one of the next sample in the buffer
121     ffado_timestamp_t ts_head_tmp;
122     m_data_buffer->getBufferHeadTimestamp ( &ts_head_tmp, &fc ); // thread safe
123
124     // the timestamp gives us the time at which we want the sample block
125     // to be output by the device
126     presentation_time = ( uint64_t ) ts_head_tmp;
127     m_last_timestamp = presentation_time;
128
129     // now we calculate the time when we have to transmit the sample block
130     transmit_at_time = substractTicks ( presentation_time, MOTU_TRANSMIT_TRANSFER_DELAY );
131
132     // calculate the cycle this block should be presented in
133     // (this is just a virtual calculation since at that time it should
134     //  already be in the device's buffer)
135     presentation_cycle = ( unsigned int ) ( TICKS_TO_CYCLES ( presentation_time ) );
136
137     // calculate the cycle this block should be transmitted in
138     transmit_at_cycle = ( unsigned int ) ( TICKS_TO_CYCLES ( transmit_at_time ) );
139
140     // we can check whether this cycle is within the 'window' we have
141     // to send this packet.
142     // first calculate the number of cycles left before presentation time
143     cycles_until_presentation = diffCycles ( presentation_cycle, cycle );
144
145     // we can check whether this cycle is within the 'window' we have
146     // to send this packet.
147     // first calculate the number of cycles left before presentation time
148     cycles_until_transmit = diffCycles ( transmit_at_cycle, cycle );
149
150     if (dropped) {
151         debugOutput ( DEBUG_LEVEL_VERBOSE,
152                     "Gen HDR: CY=%04u, TC=%04u, CUT=%04d, TST=%011llu (%04u), TSP=%011llu (%04u)\n",
153                     cycle,
154                     transmit_at_cycle, cycles_until_transmit,
155                     transmit_at_time, ( unsigned int ) TICKS_TO_CYCLES ( transmit_at_time ),
156                     presentation_time, ( unsigned int ) TICKS_TO_CYCLES ( presentation_time ) );
157     }
158     // two different options:
159     // 1) there are not enough frames for one packet
160     //      => determine wether this is a problem, since we might still
161     //         have some time to send it
162     // 2) there are enough packets
163     //      => determine whether we have to send them in this packet
164     if ( fc < ( signed int ) getNominalFramesPerPacket() )
165     {
166         // not enough frames in the buffer,
167
168         // we can still postpone the queueing of the packets
169         // if we are far enough ahead of the presentation time
170         if ( cycles_until_presentation <= min_cycles_before_presentation )
171         {
172             debugOutput ( DEBUG_LEVEL_VERBOSE,
173                         "Insufficient frames (P): N=%02d, CY=%04u, TC=%04u, CUT=%04d\n",
174                         fc, cycle, transmit_at_cycle, cycles_until_transmit );
175             // we are too late
176             return eCRV_XRun;
177         }
178         else
179         {
180             debugOutput ( DEBUG_LEVEL_VERY_VERBOSE,
181                         "Insufficient frames (NP): N=%02d, CY=%04u, TC=%04u, CUT=%04d\n",
182                         fc, cycle, transmit_at_cycle, cycles_until_transmit );
183             // there is still time left to send the packet
184             // we want the system to give this packet another go at a later time instant
185             return eCRV_Again;
186         }
187     }
188     else
189     {
190         // there are enough frames, so check the time they are intended for
191         // all frames have a certain 'time window' in which they can be sent
192         // this corresponds to the range of the timestamp mechanism:
193         // we can send a packet 15 cycles in advance of the 'presentation time'
194         // in theory we can send the packet up till one cycle before the presentation time,
195         // however this is not very smart.
196
197         // There are 3 options:
198         // 1) the frame block is too early
199         //      => send an empty packet
200         // 2) the frame block is within the window
201         //      => send it
202         // 3) the frame block is too late
203         //      => discard (and raise xrun?)
204         //         get next block of frames and repeat
205
206         if(cycles_until_transmit < 0)
207         {
208             // we are too late
209             debugOutput(DEBUG_LEVEL_VERBOSE,
210                         "Too late: CY=%04u, TC=%04u, CUT=%04d, TSP=%011llu (%04u)\n",
211                         cycle,
212                         transmit_at_cycle, cycles_until_transmit,
213                         presentation_time, (unsigned int)TICKS_TO_CYCLES(presentation_time) );
214
215             // however, if we can send this sufficiently before the presentation
216             // time, it could be harmless.
217             // NOTE: dangerous since the device has no way of reporting that it didn't get
218             //       this packet on time.
219             if(cycles_until_presentation >= min_cycles_before_presentation)
220             {
221                 // we are not that late and can still try to transmit the packet
222                 m_tx_dbc += fillDataPacketHeader((quadlet_t *)data, length, m_last_timestamp);
223                 if (m_tx_dbc > 0xff)
224                     m_tx_dbc -= 0x100;
225                 return eCRV_Packet;
226             }
227             else   // definitely too late
228             {
229                 return eCRV_XRun;
230             }
231         }
232         else if(cycles_until_transmit <= max_cycles_to_transmit_early)
233         {
234             // it's time send the packet
235             m_tx_dbc += fillDataPacketHeader((quadlet_t *)data, length, m_last_timestamp);
236             if (m_tx_dbc > 0xff)
237                 m_tx_dbc -= 0x100;
238             return eCRV_Packet;
239         }
240         else
241         {
242             debugOutput ( DEBUG_LEVEL_VERY_VERBOSE,
243                         "Too early: CY=%04u, TC=%04u, CUT=%04d, TST=%011llu (%04u), TSP=%011llu (%04u)\n",
244                         cycle,
245                         transmit_at_cycle, cycles_until_transmit,
246                         transmit_at_time, ( unsigned int ) TICKS_TO_CYCLES ( transmit_at_time ),
247                         presentation_time, ( unsigned int ) TICKS_TO_CYCLES ( presentation_time ) );
248 #ifdef DEBUG
249             if ( cycles_until_transmit > max_cycles_to_transmit_early + 1 )
250             {
251                 debugOutput ( DEBUG_LEVEL_VERY_VERBOSE,
252                             "Way too early: CY=%04u, TC=%04u, CUT=%04d, TST=%011llu (%04u), TSP=%011llu (%04u)\n",
253                             cycle,
254                             transmit_at_cycle, cycles_until_transmit,
255                             transmit_at_time, ( unsigned int ) TICKS_TO_CYCLES ( transmit_at_time ),
256                             presentation_time, ( unsigned int ) TICKS_TO_CYCLES ( presentation_time ) );
257             }
258 #endif
259             // we are too early, send only an empty packet
260             return eCRV_EmptyPacket;
261         }
262     }
263     return eCRV_Invalid;
264 }
265
266 enum StreamProcessor::eChildReturnValue
267 MotuTransmitStreamProcessor::generatePacketData (
268     unsigned char *data, unsigned int *length,
269     unsigned char *tag, unsigned char *sy,
270     int cycle, unsigned int dropped, unsigned int max_length )
271 {
272     quadlet_t *quadlet = (quadlet_t *)data;
273     quadlet += 2; // skip the header
274     // Size of a single data frame in quadlets
275     unsigned dbs = m_event_size / 4;
276
277     // The number of events per packet expected by the MOTU is solely
278     // dependent on the current sample rate.  An 'event' is one sample from
279     // all channels plus possibly other midi and control data.
280     signed n_events = getNominalFramesPerPacket();
281
282     if (m_data_buffer->readFrames(n_events, (char *)(data + 8))) {
283         float ticks_per_frame = m_Parent.getDeviceManager().getStreamProcessorManager().getSyncSource().getActualRate();
284
285 #if TESTTONE
286         // FIXME: remove this hacked in 1 kHz test signal to
287         // analog-1 when testing is complete.
288         signed int i, int_tpf = (int)ticks_per_frame;
289         unsigned char *sample = data+8+16;
290         for (i=0; i<n_events; i++, sample+=m_event_size) {
291             static signed int a_cx = 0;
292             // Each sample is 3 bytes with MSB in lowest address (ie:
293             // network byte order).  After byte order swap, the 24-bit
294             // MSB is in the second byte of val.
295             signed int val = htonl((int)(0x7fffff*sin((1000.0*2.0*M_PI/24576000.0)*a_cx)));
296             memcpy(sample,((char *)&val)+1,3);
297             if ((a_cx+=int_tpf) >= 24576000) {
298                 a_cx -= 24576000;
299             }
300         }
301 #endif
302
303         // Set up each frames's SPH.
304         for (int i=0; i < n_events; i++, quadlet += dbs) {
305 //FIXME: not sure which is best for the MOTU
306 //            int64_t ts_frame = addTicks(ts, (unsigned int)(i * ticks_per_frame));
307             int64_t ts_frame = addTicks(m_last_timestamp, (unsigned int)(i * ticks_per_frame));
308             *quadlet = htonl(fullTicksToSph(ts_frame));
309         }
310
311         return eCRV_OK;
312     }
313     else return eCRV_XRun;
314
315 }
316
317 enum StreamProcessor::eChildReturnValue
318 MotuTransmitStreamProcessor::generateSilentPacketHeader (
319     unsigned char *data, unsigned int *length,
320     unsigned char *tag, unsigned char *sy,
321     int cycle, unsigned int dropped, unsigned int max_length )
322 {
323     debugOutput ( DEBUG_LEVEL_VERY_VERBOSE, "XMIT NONE: CY=%04u, TSP=%011llu (%04u)\n",
324                 cycle, m_last_timestamp, ( unsigned int ) TICKS_TO_CYCLES ( m_last_timestamp ) );
325
326     // Do housekeeping expected for all packets sent to the MOTU, even
327     // for packets containing no audio data.
328     *sy = 0x00;
329     *tag = 1;      // All MOTU packets have a CIP-like header
330     *length = 8;
331
332     m_tx_dbc += fillNoDataPacketHeader ( (quadlet_t *)data, length );
333     return eCRV_OK;
334 }
335
336 enum StreamProcessor::eChildReturnValue
337 MotuTransmitStreamProcessor::generateSilentPacketData (
338     unsigned char *data, unsigned int *length,
339     unsigned char *tag, unsigned char *sy,
340     int cycle, unsigned int dropped, unsigned int max_length )
341 {
342     return eCRV_OK; // no need to do anything
343 }
344
345 unsigned int MotuTransmitStreamProcessor::fillDataPacketHeader (
346     quadlet_t *data, unsigned int* length,
347     uint32_t ts )
348 {
349     quadlet_t *quadlet = (quadlet_t *)data;
350     // Size of a single data frame in quadlets
351     unsigned dbs = m_event_size / 4;
352
353     // The number of events per packet expected by the MOTU is solely
354     // dependent on the current sample rate.  An 'event' is one sample from
355     // all channels plus possibly other midi and control data.
356     signed n_events = getNominalFramesPerPacket();
357
358     // construct the packet CIP-like header.  Even if this is a data-less
359     // packet the dbs field is still set as if there were data blocks
360     // present.  For data-less packets the dbc is the same as the previously
361     // transmitted block.
362     *quadlet = htonl(0x00000400 | ((m_Parent.get1394Service().getLocalNodeId()&0x3f)<<24) | m_tx_dbc | (dbs<<16));
363     quadlet++;
364     *quadlet = htonl(0x8222ffff);
365     quadlet++;
366     return n_events;
367 }
368
369 unsigned int MotuTransmitStreamProcessor::fillNoDataPacketHeader (
370     quadlet_t *data, unsigned int* length )
371 {
372     quadlet_t *quadlet = (quadlet_t *)data;
373     // Size of a single data frame in quadlets
374     unsigned dbs = m_event_size / 4;
375     // construct the packet CIP-like header.  Even if this is a data-less
376     // packet the dbs field is still set as if there were data blocks
377     // present.  For data-less packets the dbc is the same as the previously
378     // transmitted block.
379     *quadlet = htonl(0x00000400 | ((m_Parent.get1394Service().getLocalNodeId()&0x3f)<<24) | m_tx_dbc | (dbs<<16));
380     quadlet++;
381     *quadlet = htonl(0x8222ffff);
382     quadlet++;
383     *length = 8;
384     return 0;
385 }
386
387 bool MotuTransmitStreamProcessor::prepareChild()
388 {
389     debugOutput ( DEBUG_LEVEL_VERBOSE, "Preparing (%p)...\n", this );
390     return true;
391 }
392
393 /*
394 * compose the event streams for the packets from the port buffers
395 */
396 bool MotuTransmitStreamProcessor::processWriteBlock(char *data,
397                        unsigned int nevents, unsigned int offset) {
398     bool no_problem=true;
399     unsigned int i;
400
401     // FIXME: ensure the MIDI and control streams are all zeroed until
402     // such time as they are fully implemented.
403     for (i=0; i<nevents; i++) {
404         memset(data+4+i*m_event_size, 0x00, 6);
405     }
406
407     for ( PortVectorIterator it = m_Ports.begin();
408       it != m_Ports.end();
409       ++it ) {
410         // If this port is disabled, don't process it
411         if((*it)->isDisabled()) {continue;};
412
413         Port *port=(*it);
414
415         switch(port->getPortType()) {
416
417         case Port::E_Audio:
418             if (encodePortToMotuEvents(static_cast<MotuAudioPort *>(*it), (quadlet_t *)data, offset, nevents)) {
419                 debugWarning("Could not encode port %s to Motu events",(*it)->getName().c_str());
420                 no_problem=false;
421             }
422             break;
423         case Port::E_Midi:
424 //             if (encodePortToMotuMidiEvents(static_cast<MotuMidiPort *>(*it), (quadlet_t *)data, offset, nevents)) {
425 //                 debugWarning("Could not encode port %s to Midi events",(*it)->getName().c_str());
426 //                 no_problem=false;
427 //             }
428             break;
429         default: // ignore
430             break;
431         }
432     }
433     return no_problem;
434 }
435
436 bool
437 MotuTransmitStreamProcessor::transmitSilenceBlock(char *data,
438                        unsigned int nevents, unsigned int offset) {
439     // This is the same as the non-silence version, except that is
440     // doesn't read from the port buffers.
441     bool no_problem = true;
442     for ( PortVectorIterator it = m_Ports.begin();
443       it != m_Ports.end();
444       ++it ) {
445         Port *port=(*it);
446
447         switch(port->getPortType()) {
448
449         case Port::E_Audio:
450             if (encodeSilencePortToMotuEvents(static_cast<MotuAudioPort *>(*it), (quadlet_t *)data, offset, nevents)) {
451                 debugWarning("Could not encode port %s to MBLA events",(*it)->getName().c_str());
452                 no_problem = false;
453             }
454             break;
455         case Port::E_Midi:
456 //             if (encodeSilencePortToMotuMidiEvents(static_cast<MotuMidiPort *>(*it), (quadlet_t *)data, offset, nevents)) {
457 //                 debugWarning("Could not encode port %s to Midi events",(*it)->getName().c_str());
458 //                 no_problem = false;
459 //             }
460             break;
461         default: // ignore
462             break;
463         }
464     }
465     return no_problem;
466 }
467
468 int MotuTransmitStreamProcessor::encodePortToMotuEvents(MotuAudioPort *p, quadlet_t *data,
469                        unsigned int offset, unsigned int nevents) {
470 // Encodes nevents worth of data from the given port into the given buffer.  The
471 // format of the buffer is precisely that which will be sent to the MOTU.
472 // The basic idea:
473 //   iterate over the ports
474 //     * get port buffer address
475 //     * loop over events
476 //         - pick right sample in event based upon PortInfo
477 //         - convert sample from Port format (E_Int24, E_Float, ..) to MOTU
478 //           native format
479 //
480 // We include the ability to start the transfer from the given offset within
481 // the port (expressed in frames) so the 'efficient' transfer method can be
482 // utilised.
483
484     unsigned int j=0;
485
486     // Use char here since the target address won't necessarily be
487     // aligned; use of an unaligned quadlet_t may cause issues on certain
488     // architectures.  Besides, the target (data going directly to the MOTU)
489     // isn't structured in quadlets anyway; it mainly consists of packed
490     // 24-bit integers.
491     unsigned char *target;
492     target = (unsigned char *)data + p->getPosition();
493
494     switch(p->getDataType()) {
495         default:
496         case Port::E_Int24:
497             {
498                 quadlet_t *buffer=(quadlet_t *)(p->getBufferAddress());
499
500                 assert(nevents + offset <= p->getBufferSize());
501
502                 // Offset is in frames, but each port is only a single
503                 // channel, so the number of frames is the same as the
504                 // number of quadlets to offset (assuming the port buffer
505                 // uses one quadlet per sample, which is the case currently).
506                 buffer+=offset;
507
508                 for(j = 0; j < nevents; j += 1) { // Decode nsamples
509                     *target = (*buffer >> 16) & 0xff;
510                     *(target+1) = (*buffer >> 8) & 0xff;
511                     *(target+2) = (*buffer) & 0xff;
512
513                     buffer++;
514                     target+=m_event_size;
515                 }
516             }
517             break;
518         case Port::E_Float:
519             {
520                 const float multiplier = (float)(0x7FFFFF);
521                 float *buffer=(float *)(p->getBufferAddress());
522
523                 assert(nevents + offset <= p->getBufferSize());
524
525                 buffer+=offset;
526
527                 for(j = 0; j < nevents; j += 1) { // decode max nsamples
528                     unsigned int v = (int)(*buffer * multiplier);
529                     *target = (v >> 16) & 0xff;
530                     *(target+1) = (v >> 8) & 0xff;
531                     *(target+2) = v & 0xff;
532
533                     buffer++;
534                     target+=m_event_size;
535                 }
536             }
537             break;
538     }
539
540     return 0;
541 }
542
543 int MotuTransmitStreamProcessor::encodeSilencePortToMotuEvents(MotuAudioPort *p, quadlet_t *data,
544                        unsigned int offset, unsigned int nevents) {
545     unsigned int j=0;
546     unsigned char *target = (unsigned char *)data + p->getPosition();
547
548     switch (p->getDataType()) {
549     default:
550         case Port::E_Int24:
551         case Port::E_Float:
552         for (j = 0; j < nevents; j++) {
553             *target = *(target+1) = *(target+2) = 0;
554             target += m_event_size;
555         }
556         break;
557     }
558
559     return 0;
560 }
561
562 } // end of namespace Streaming
Note: See TracBrowser for help on using the browser.