root/trunk/libffado/src/libieee1394/CycleTimerHelper.cpp

Revision 1184, 27.0 kB (checked in by ppalmers, 16 years ago)

add some extra saffire pro control elements

Line 
1 /*
2  * Copyright (C) 2005-2008 by Pieter Palmers
3  *
4  * This file is part of FFADO
5  * FFADO = Free Firewire (pro-)audio drivers for linux
6  *
7  * FFADO is based upon FreeBoB
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 2 of the License, or
12  * (at your option) version 3 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  *
22  */
23
24 #include "config.h"
25
26 #include "CycleTimerHelper.h"
27 #include "ieee1394service.h"
28 #include "libutil/PosixThread.h"
29 #include "libutil/PosixMutex.h"
30 #include "libutil/Atomic.h"
31 #include "libutil/Watchdog.h"
32
33 #define DLL_PI        (3.141592653589793238)
34 #define DLL_SQRT2     (1.414213562373095049)
35
36 // the high-bandwidth coefficients are used
37 // to speed up inital tracking
38 #define DLL_BANDWIDTH_HIGH (0.1)
39 #define DLL_OMEGA_HIGH     (2.0*DLL_PI*DLL_BANDWIDTH_HIGH)
40 #define DLL_COEFF_B_HIGH   (DLL_SQRT2 * DLL_OMEGA_HIGH)
41 #define DLL_COEFF_C_HIGH   (DLL_OMEGA_HIGH * DLL_OMEGA_HIGH)
42
43 // the low-bandwidth coefficients are used once we have a
44 // good estimate of the internal parameters
45 #define DLL_BANDWIDTH (0.1)
46 #define DLL_OMEGA     (2.0*DLL_PI*DLL_BANDWIDTH)
47 #define DLL_COEFF_B   (DLL_SQRT2 * DLL_OMEGA)
48 #define DLL_COEFF_C   (DLL_OMEGA * DLL_OMEGA)
49
50 // is 1 sec
51 #define UPDATES_WITH_HIGH_BANDWIDTH \
52          (1000000 / IEEE1394SERVICE_CYCLETIMER_DLL_UPDATE_INTERVAL_USEC)
53
54 IMPL_DEBUG_MODULE( CycleTimerHelper, CycleTimerHelper, DEBUG_LEVEL_NORMAL );
55
56 CycleTimerHelper::CycleTimerHelper(Ieee1394Service &parent, unsigned int update_period_us)
57     : m_Parent ( parent )
58     , m_ticks_per_update ( ((uint64_t)TICKS_PER_SECOND) * ((uint64_t)update_period_us) / 1000000ULL )
59     , m_usecs_per_update ( update_period_us )
60     , m_avg_wakeup_delay ( 0.0 )
61     , m_dll_e2 ( 0.0 )
62     , m_current_time_usecs ( 0 )
63     , m_next_time_usecs ( 0 )
64     , m_current_time_ticks ( 0 )
65     , m_next_time_ticks ( 0 )
66     , m_first_run ( true )
67     , m_sleep_until ( 0 )
68     , m_cycle_timer_prev ( 0 )
69     , m_cycle_timer_ticks_prev ( 0 )
70     , m_high_bw_updates ( UPDATES_WITH_HIGH_BANDWIDTH )
71     , m_current_shadow_idx ( 0 )
72     , m_Thread ( NULL )
73     , m_realtime ( false )
74     , m_priority ( 0 )
75     , m_update_lock( new Util::PosixMutex() )
76     , m_busreset_functor ( NULL)
77     , m_unhandled_busreset ( false )
78 {
79     debugOutput( DEBUG_LEVEL_VERBOSE, "Create %p...\n", this);
80 }
81
82 CycleTimerHelper::CycleTimerHelper(Ieee1394Service &parent, unsigned int update_period_us, bool rt, int prio)
83     : m_Parent ( parent )
84     , m_ticks_per_update ( ((uint64_t)TICKS_PER_SECOND) * ((uint64_t)update_period_us) / 1000000ULL )
85     , m_usecs_per_update ( update_period_us )
86     , m_avg_wakeup_delay ( 0.0 )
87     , m_dll_e2 ( 0.0 )
88     , m_current_time_usecs ( 0 )
89     , m_next_time_usecs ( 0 )
90     , m_current_time_ticks ( 0 )
91     , m_next_time_ticks ( 0 )
92     , m_first_run ( true )
93     , m_sleep_until ( 0 )
94     , m_cycle_timer_prev ( 0 )
95     , m_cycle_timer_ticks_prev ( 0 )
96     , m_high_bw_updates ( UPDATES_WITH_HIGH_BANDWIDTH )
97     , m_current_shadow_idx ( 0 )
98     , m_Thread ( NULL )
99     , m_realtime ( rt )
100     , m_priority ( prio )
101     , m_update_lock( new Util::PosixMutex() )
102     , m_busreset_functor ( NULL)
103     , m_unhandled_busreset ( false )
104 {
105     debugOutput( DEBUG_LEVEL_VERBOSE, "Create %p...\n", this);
106 }
107
108 CycleTimerHelper::~CycleTimerHelper()
109 {
110     if (m_Thread) {
111         m_Thread->Stop();
112         delete m_Thread;
113     }
114
115     // unregister the bus reset handler
116     if(m_busreset_functor) {
117         m_Parent.remBusResetHandler( m_busreset_functor );
118         delete m_busreset_functor;
119     }
120     delete m_update_lock;
121 }
122
123 bool
124 CycleTimerHelper::Start()
125 {
126     debugOutput( DEBUG_LEVEL_VERBOSE, "Start %p...\n", this);
127
128     if(!initValues()) {
129         debugFatal("(%p) Could not init values\n", this);
130         return false;
131     }
132
133     m_Thread = new Util::PosixThread(this, m_realtime, m_priority,
134                                      PTHREAD_CANCEL_DEFERRED);
135     if(!m_Thread) {
136         debugFatal("No thread\n");
137         return false;
138     }
139     // register the thread with the RT watchdog
140     Util::Watchdog *watchdog = m_Parent.getWatchdog();
141     if(watchdog) {
142         if(!watchdog->registerThread(m_Thread)) {
143             debugWarning("could not register update thread with watchdog\n");
144         }
145     } else {
146         debugWarning("could not find valid watchdog\n");
147     }
148    
149     if (m_Thread->Start() != 0) {
150         debugFatal("Could not start update thread\n");
151         return false;
152     }
153     return true;
154 }
155
156 bool
157 CycleTimerHelper::initValues()
158 {
159     debugOutput( DEBUG_LEVEL_VERBOSE, "(%p) Init values...\n", this );
160     Util::MutexLockHelper lock(*m_update_lock);
161
162     // initialize the 'prev ctr' values
163     uint64_t local_time;
164     int maxtries2 = 10;
165     do {
166         debugOutput( DEBUG_LEVEL_VERBOSE, "Read CTR...\n" );
167         if(!m_Parent.readCycleTimerReg(&m_cycle_timer_prev, &local_time)) {
168             debugError("Could not read cycle timer register\n");
169             return false;
170         }
171         if (m_cycle_timer_prev == 0) {
172             debugOutput(DEBUG_LEVEL_VERBOSE,
173                         "Bogus CTR: %08X on try %02d\n",
174                         m_cycle_timer_prev, maxtries2);
175         }
176         debugOutput( DEBUG_LEVEL_VERBOSE, " read : CTR: %11lu, local: %17llu\n",
177                             m_cycle_timer_prev, local_time);
178         debugOutput(DEBUG_LEVEL_VERBOSE,
179                            "  ctr   : 0x%08X %11llu (%03us %04ucy %04uticks)\n",
180                            (uint32_t)m_cycle_timer_prev, (uint64_t)CYCLE_TIMER_TO_TICKS(m_cycle_timer_prev),
181                            (unsigned int)CYCLE_TIMER_GET_SECS( m_cycle_timer_prev ),
182                            (unsigned int)CYCLE_TIMER_GET_CYCLES( m_cycle_timer_prev ),
183                            (unsigned int)CYCLE_TIMER_GET_OFFSET( m_cycle_timer_prev ) );
184        
185     } while (m_cycle_timer_prev == 0 && maxtries2--);
186     m_cycle_timer_ticks_prev = CYCLE_TIMER_TO_TICKS(m_cycle_timer_prev);
187
188 #if IEEE1394SERVICE_USE_CYCLETIMER_DLL
189     debugOutput( DEBUG_LEVEL_VERBOSE, "requesting DLL re-init...\n" );
190     Util::SystemTimeSource::SleepUsecRelative(1000); // some time to settle
191     m_high_bw_updates = UPDATES_WITH_HIGH_BANDWIDTH;
192     if(!initDLL()) {
193         debugError("(%p) Could not init DLL\n", this);
194         return false;
195     }
196     // make the DLL re-init itself as if it were started up
197     m_first_run = true;
198 #endif
199     debugOutput( DEBUG_LEVEL_VERBOSE, "ready...\n" );
200     return true;
201 }
202
203 bool
204 CycleTimerHelper::Init()
205 {
206     debugOutput( DEBUG_LEVEL_VERBOSE, "Initialize %p...\n", this);
207
208     // register a bus reset handler
209     m_busreset_functor = new Util::MemberFunctor0< CycleTimerHelper*,
210                 void (CycleTimerHelper::*)() >
211                 ( this, &CycleTimerHelper::busresetHandler, false );
212     if ( !m_busreset_functor ) {
213         debugFatal( "(%p) Could not create busreset handler\n", this );
214         return false;
215     }
216     m_Parent.addBusResetHandler( m_busreset_functor );
217
218     #ifdef DEBUG
219     m_last_loop_entry = 0;
220     m_successive_short_loops = 0;
221     #endif
222
223     return true;
224 }
225
226 void
227 CycleTimerHelper::busresetHandler()
228 {
229     debugOutput( DEBUG_LEVEL_VERBOSE, "Bus reset...\n" );
230     m_unhandled_busreset = true;
231     // whenever a bus reset occurs, the root node can change,
232     // and the CTR timer can be reset. We should hence reinit
233     // the DLL
234     if(!initValues()) {
235         debugError("(%p) Could not re-init values\n", this);
236     }
237     m_unhandled_busreset = false;
238 }
239
240 bool
241 CycleTimerHelper::setThreadParameters(bool rt, int priority) {
242     debugOutput( DEBUG_LEVEL_VERBOSE, "(%p) switch to: (rt=%d, prio=%d)...\n", this, rt, priority);
243     if (priority > THREAD_MAX_RTPRIO) priority = THREAD_MAX_RTPRIO; // cap the priority
244     m_realtime = rt;
245     m_priority = priority;
246
247 #if IEEE1394SERVICE_USE_CYCLETIMER_DLL
248     if (m_Thread) {
249         if (m_realtime) {
250             m_Thread->AcquireRealTime(m_priority);
251         } else {
252             m_Thread->DropRealTime();
253         }
254     }
255 #endif
256
257     return true;
258 }
259
260 #if IEEE1394SERVICE_USE_CYCLETIMER_DLL
261 float
262 CycleTimerHelper::getRate()
263 {
264     float rate = (float)(diffTicks((uint64_t)m_next_time_ticks, (uint64_t)m_current_time_ticks));
265     rate /= (float)(m_next_time_usecs - m_current_time_usecs);
266     return rate;
267 }
268
269 float
270 CycleTimerHelper::getNominalRate()
271 {
272     float rate = ((double)TICKS_PER_SECOND) / 1000000.0;
273     return rate;
274 }
275
276 /*
277  * call with lock held
278  */
279 bool
280 CycleTimerHelper::initDLL() {
281     uint32_t cycle_timer;
282     uint64_t local_time;
283     uint64_t cycle_timer_ticks;
284
285     if(!readCycleTimerWithRetry(&cycle_timer, &local_time, 10)) {
286         debugError("Could not read cycle timer register\n");
287         return false;
288     }
289     cycle_timer_ticks = CYCLE_TIMER_TO_TICKS(cycle_timer);
290
291     debugOutputExtreme( DEBUG_LEVEL_VERY_VERBOSE, " read : CTR: %11lu, local: %17llu\n",
292                         cycle_timer, local_time);
293     debugOutputExtreme(DEBUG_LEVEL_VERY_VERBOSE,
294                        "  ctr   : 0x%08X %11llu (%03us %04ucy %04uticks)\n",
295                        (uint32_t)cycle_timer, (uint64_t)cycle_timer_ticks,
296                        (unsigned int)TICKS_TO_SECS( (uint64_t)cycle_timer_ticks ),
297                        (unsigned int)TICKS_TO_CYCLES( (uint64_t)cycle_timer_ticks ),
298                        (unsigned int)TICKS_TO_OFFSET( (uint64_t)cycle_timer_ticks ) );
299
300     m_sleep_until = local_time + m_usecs_per_update;
301     m_dll_e2 = m_ticks_per_update;
302     m_current_time_usecs = local_time;
303     m_next_time_usecs = m_current_time_usecs + m_usecs_per_update;
304     m_current_time_ticks = CYCLE_TIMER_TO_TICKS( cycle_timer );
305     m_next_time_ticks = addTicks( (uint64_t)m_current_time_ticks, (uint64_t)m_dll_e2);
306     debugOutput(DEBUG_LEVEL_VERBOSE, " (%p) First run\n", this);
307     debugOutput(DEBUG_LEVEL_VERBOSE,
308                 "  usecs/update: %lu, ticks/update: %lu, m_dll_e2: %f\n",
309                 m_usecs_per_update, m_ticks_per_update, m_dll_e2);
310     debugOutput(DEBUG_LEVEL_VERBOSE,
311                 "  usecs current: %f, next: %f\n",
312                 m_current_time_usecs, m_next_time_usecs);
313     debugOutput(DEBUG_LEVEL_VERBOSE,
314                 "  ticks current: %f, next: %f\n",
315                 m_current_time_ticks, m_next_time_ticks);
316     return true;
317 }
318
319 bool
320 CycleTimerHelper::Execute()
321 {
322     debugOutput( DEBUG_LEVEL_ULTRA_VERBOSE, "Execute %p...\n", this);
323
324     #ifdef DEBUG
325     uint64_t now = m_Parent.getCurrentTimeAsUsecs();
326     int diff = now - m_last_loop_entry;
327     if(diff < 100) {
328         debugOutputExtreme(DEBUG_LEVEL_VERY_VERBOSE,
329                         "(%p) short loop detected (%d usec), cnt: %d\n",
330                         this, diff, m_successive_short_loops);
331         m_successive_short_loops++;
332         if(m_successive_short_loops > 100) {
333             debugError("Shutting down runaway thread\n");
334             return false;
335         }
336     } else {
337         // reset the counter
338         m_successive_short_loops = 0;
339     }
340     m_last_loop_entry = now;
341     #endif
342
343     if (!m_first_run) {
344         // wait for the next update period
345         //#if DEBUG_EXTREME_ENABLE
346         #ifdef DEBUG
347         ffado_microsecs_t now = Util::SystemTimeSource::getCurrentTimeAsUsecs();
348         int sleep_time = m_sleep_until - now;
349         debugOutput( DEBUG_LEVEL_ULTRA_VERBOSE, "(%p) Sleep until %lld/%f (now: %lld, diff=%d) ...\n",
350                     this, m_sleep_until, m_next_time_usecs, now, sleep_time);
351         #endif
352         Util::SystemTimeSource::SleepUsecAbsolute(m_sleep_until);
353         debugOutput( DEBUG_LEVEL_ULTRA_VERBOSE, " (%p) back...\n", this);
354     }
355
356     uint32_t cycle_timer;
357     uint64_t local_time;
358     int64_t usecs_late;
359     int ntries=4;
360     uint64_t cycle_timer_ticks;
361     double diff_ticks;
362
363     // if the difference between the predicted value and the
364     // actual value seems to be too large, retry reading the cycle timer
365     // some host controllers return bogus values on some reads
366     // (looks like a non-atomic update of the register)
367     do {
368         debugOutput( DEBUG_LEVEL_ULTRA_VERBOSE, "(%p) reading cycle timer register...\n", this);
369         if(!readCycleTimerWithRetry(&cycle_timer, &local_time, 10)) {
370             debugError("Could not read cycle timer register\n");
371             return false;
372         }
373         usecs_late = local_time - m_sleep_until;
374         cycle_timer_ticks = CYCLE_TIMER_TO_TICKS(cycle_timer);
375         diff_ticks = diffTicks(cycle_timer_ticks, (int64_t)m_next_time_ticks);
376
377         // check for unrealistic CTR reads (NEC controller does that sometimes)
378         if(diff_ticks < -((double)TICKS_PER_HALFCYCLE)) {
379             debugOutput(DEBUG_LEVEL_ULTRA_VERBOSE,
380                         "(%p) have to retry CTR read, diff unrealistic: diff: %f, max: %f (try: %d)\n",
381                         this, diff_ticks, -((double)TICKS_PER_HALFCYCLE), ntries);
382         }
383
384     } while( diff_ticks < -((double)TICKS_PER_HALFCYCLE)
385              && --ntries && !m_first_run && !m_unhandled_busreset);
386
387     // grab the lock after sleeping, otherwise we can't be interrupted by
388     // the busreset thread (lower prio)
389     // also grab it after reading the CTR register such that the jitter between
390     // wakeup and read is as small as possible
391     Util::MutexLockHelper lock(*m_update_lock);
392
393     // // simulate a random scheduling delay between (0-10ms)
394     // ffado_microsecs_t tmp = Util::SystemTimeSource::SleepUsecRandom(10000);
395     // debugOutput( DEBUG_LEVEL_VERBOSE, " (%p) random sleep of %llu usecs...\n", this, tmp);
396
397     if(m_unhandled_busreset) {
398         debugOutput(DEBUG_LEVEL_VERBOSE,
399                     "(%p) Skipping DLL update due to unhandled busreset\n", this);
400         m_sleep_until += m_usecs_per_update;
401         // keep the thread running
402         return true;
403     }
404
405     debugOutputExtreme( DEBUG_LEVEL_ULTRA_VERBOSE, " read : CTR: %11lu, local: %17llu\n",
406                         cycle_timer, local_time);
407     debugOutputExtreme(DEBUG_LEVEL_ULTRA_VERBOSE,
408                        "  ctr   : 0x%08X %11llu (%03us %04ucy %04uticks)\n",
409                        (uint32_t)cycle_timer, (uint64_t)cycle_timer_ticks,
410                        (unsigned int)TICKS_TO_SECS( (uint64_t)cycle_timer_ticks ),
411                        (unsigned int)TICKS_TO_CYCLES( (uint64_t)cycle_timer_ticks ),
412                        (unsigned int)TICKS_TO_OFFSET( (uint64_t)cycle_timer_ticks ) );
413
414     if (m_first_run) {
415         if(!initDLL()) {
416             debugError("(%p) Could not init DLL\n", this);
417             return false;
418         }
419         m_first_run = false;
420     } else {
421         // calculate next sleep time
422         m_sleep_until += m_usecs_per_update;
423
424         // correct for the latency between the wakeup and the actual CTR
425         // read. The only time we can trust is the time returned by the
426         // CTR read kernel call, since that (should be) atomically read
427         // together with the ctr register itself.
428
429         // if we are usecs_late usecs late
430         // the cycle timer has ticked approx ticks_late ticks too much
431         // if we are woken up early (which shouldn't happen according to POSIX)
432         // the cycle timer has ticked approx -ticks_late too little
433         int64_t ticks_late = (usecs_late * TICKS_PER_SECOND) / 1000000LL;
434         // the corrected difference between predicted and actual ctr
435         // i.e. DLL error signal
436         double diff_ticks_corr;
437         if (ticks_late > 0) {
438             diff_ticks_corr = diff_ticks - ticks_late;
439             debugOutputExtreme(DEBUG_LEVEL_ULTRA_VERBOSE,
440                                "diff_ticks_corr=%f, diff_ticks = %f, ticks_late = %lld\n",
441                                diff_ticks_corr, diff_ticks, ticks_late);
442         } else {
443             debugError("Early wakeup, should not happen!\n");
444             // recover
445             diff_ticks_corr = diff_ticks + ticks_late;
446         }
447
448         #ifdef DEBUG
449         // makes no sense if not running realtime
450         if(m_realtime && usecs_late > 1000) {
451             debugOutput(DEBUG_LEVEL_VERBOSE, "Rather late wakeup: %lld usecs\n", usecs_late);
452         }
453         #endif
454
455         // update the x-axis values
456         m_current_time_ticks = m_next_time_ticks;
457
458         // decide what coefficients to use
459         double coeff_b, coeff_c;
460         if (m_high_bw_updates > 0) {
461             coeff_b = DLL_COEFF_B_HIGH;
462             coeff_c = DLL_COEFF_C_HIGH;
463             m_high_bw_updates--;
464             if (m_high_bw_updates == 0) {
465                 debugOutput(DEBUG_LEVEL_VERBOSE,
466                             "Switching to low-bandwidth coefficients\n");
467             }
468         } else {
469             coeff_b = DLL_COEFF_B;
470             coeff_c = DLL_COEFF_C;
471         }
472
473         // it should be ok to not do this in tick space
474         // since diff_ticks_corr should not be near wrapping
475         // (otherwise we are out of range. we need a few calls
476         //  w/o wrapping for this to work. That should not be
477         //  an issue as long as the update interval is smaller
478         //  than the wrapping interval.)
479         // and coeff_b < 1, hence tmp is not near wrapping
480
481         double step_ticks = (coeff_b * diff_ticks_corr);
482         debugOutputExtreme(DEBUG_LEVEL_VERY_VERBOSE,
483                            "diff_ticks_corr=%f, step_ticks=%f\n",
484                            diff_ticks_corr, step_ticks);
485
486         // the same goes for m_dll_e2, which should be approx equal
487         // to the ticks/usec rate (= 24.576) hence also not near
488         // wrapping
489         step_ticks += m_dll_e2;
490         debugOutputExtreme(DEBUG_LEVEL_VERY_VERBOSE,
491                            "add %f ticks to step_ticks => step_ticks=%f\n",
492                            m_dll_e2, step_ticks);
493
494         // it can't be that we have to update to a value in the past
495         if(step_ticks < 0) {
496             debugError("negative step: %f! (correcting to nominal)\n", step_ticks);
497             // recover to an estimated value
498             step_ticks = (double)m_ticks_per_update;
499         }
500
501         if(step_ticks > TICKS_PER_SECOND) {
502             debugWarning("rather large step: %f ticks (> 1sec)\n", step_ticks);
503         }
504
505         // now add the step ticks with wrapping.
506         m_next_time_ticks = (double)(addTicks((uint64_t)m_current_time_ticks, (uint64_t)step_ticks));
507
508         // update the DLL state
509         m_dll_e2 += coeff_c * diff_ticks_corr;
510
511         // update the y-axis values
512         m_current_time_usecs = m_next_time_usecs;
513         m_next_time_usecs += m_usecs_per_update;
514
515         debugOutputExtreme(DEBUG_LEVEL_VERY_VERBOSE,
516                            " usecs: current: %f next: %f usecs_late=%lld ticks_late=%lld\n",
517                            m_current_time_usecs, m_next_time_usecs, usecs_late, ticks_late);
518         debugOutputExtreme(DEBUG_LEVEL_VERY_VERBOSE,
519                            " ticks: current: %f next: %f diff=%f\n",
520                            m_current_time_ticks, m_next_time_ticks, diff_ticks);
521         debugOutputExtreme(DEBUG_LEVEL_VERY_VERBOSE,
522                            " ticks: current: %011llu (%03us %04ucy %04uticks)\n",
523                            (uint64_t)m_current_time_ticks,
524                            (unsigned int)TICKS_TO_SECS( (uint64_t)m_current_time_ticks ),
525                            (unsigned int)TICKS_TO_CYCLES( (uint64_t)m_current_time_ticks ),
526                            (unsigned int)TICKS_TO_OFFSET( (uint64_t)m_current_time_ticks ) );
527         debugOutputExtreme(DEBUG_LEVEL_VERY_VERBOSE,
528                            " ticks: next   : %011llu (%03us %04ucy %04uticks)\n",
529                            (uint64_t)m_next_time_ticks,
530                            (unsigned int)TICKS_TO_SECS( (uint64_t)m_next_time_ticks ),
531                            (unsigned int)TICKS_TO_CYCLES( (uint64_t)m_next_time_ticks ),
532                            (unsigned int)TICKS_TO_OFFSET( (uint64_t)m_next_time_ticks ) );
533
534         debugOutputExtreme(DEBUG_LEVEL_VERY_VERBOSE,
535                            " state: local: %11llu, dll_e2: %f, rate: %f\n",
536                            local_time, m_dll_e2, getRate());
537     }
538
539     // prepare the new compute vars
540     struct compute_vars new_vars;
541     new_vars.ticks = (uint64_t)(m_current_time_ticks);
542     new_vars.usecs = (uint64_t)m_current_time_usecs;
543     new_vars.rate = getRate();
544
545     // get the next index
546     unsigned int next_idx = (m_current_shadow_idx + 1) % CTRHELPER_NB_SHADOW_VARS;
547
548     // update the next index position
549     m_shadow_vars[next_idx] = new_vars;
550
551     // then we can update the current index
552     m_current_shadow_idx = next_idx;
553
554 #ifdef DEBUG
555     // do some verification
556     // we re-read a valid ctr timestamp
557     // then we use the attached system time to calculate
558     // the DLL generated timestamp and we check what the
559     // difference is
560
561     if(!readCycleTimerWithRetry(&cycle_timer, &local_time, 10)) {
562         debugError("Could not read cycle timer register (verify)\n");
563         return true; // true since this is a check only
564     }
565     cycle_timer_ticks = CYCLE_TIMER_TO_TICKS(cycle_timer);
566
567     // only check when successful
568     int64_t time_diff = local_time - new_vars.usecs;
569     double y_step_in_ticks = ((double)time_diff) * new_vars.rate;
570     int64_t y_step_in_ticks_int = (int64_t)y_step_in_ticks;
571     uint64_t offset_in_ticks_int = new_vars.ticks;
572     uint32_t dll_time;
573     if (y_step_in_ticks_int > 0) {
574         dll_time = addTicks(offset_in_ticks_int, y_step_in_ticks_int);
575     } else {
576         dll_time = substractTicks(offset_in_ticks_int, -y_step_in_ticks_int);
577     }
578     int32_t ctr_diff = cycle_timer_ticks-dll_time;
579     debugOutput(DEBUG_LEVEL_ULTRA_VERBOSE, "(%p) CTR DIFF: HW %010llu - DLL %010lu = %010ld (%s)\n",
580                 this, cycle_timer_ticks, dll_time, ctr_diff, (ctr_diff>0?"lag":"lead"));
581 #endif
582
583     return true;
584 }
585
586 uint32_t
587 CycleTimerHelper::getCycleTimerTicks()
588 {
589     uint64_t now = m_Parent.getCurrentTimeAsUsecs();
590     return getCycleTimerTicks(now);
591 }
592
593 uint32_t
594 CycleTimerHelper::getCycleTimerTicks(uint64_t now)
595 {
596     uint32_t retval;
597     struct compute_vars *my_vars;
598
599     // get pointer and copy the contents
600     // no locking should be needed since we have more than one
601     // of these vars available, and our use will always be finished before
602     // m_current_shadow_idx changes since this thread's priority should
603     // be higher than the one of the writer thread. Even if not, we only have to ensure
604     // that the used dataset is consistent. We can use an older dataset if it's consistent
605     // since it will also provide a fairly decent extrapolation.
606     my_vars = m_shadow_vars + m_current_shadow_idx;
607
608     int64_t time_diff = now - my_vars->usecs;
609     double y_step_in_ticks = ((double)time_diff) * my_vars->rate;
610     int64_t y_step_in_ticks_int = (int64_t)y_step_in_ticks;
611     uint64_t offset_in_ticks_int = my_vars->ticks;
612
613     if (y_step_in_ticks_int > 0) {
614         retval = addTicks(offset_in_ticks_int, y_step_in_ticks_int);
615 /*        debugOutputExtreme(DEBUG_LEVEL_VERY_VERBOSE, "y_step_in_ticks_int > 0: %lld, time_diff: %f, rate: %f, retval: %lu\n",
616                     y_step_in_ticks_int, time_diff, my_vars.rate, retval);*/
617     } else {
618         retval = substractTicks(offset_in_ticks_int, -y_step_in_ticks_int);
619
620         // this can happen if the update thread was woken up earlier than it should have been
621 /*        debugOutputExtreme(DEBUG_LEVEL_VERY_VERBOSE, "y_step_in_ticks_int <= 0: %lld, time_diff: %f, rate: %f, retval: %lu\n",
622                     y_step_in_ticks_int, time_diff, my_vars.rate, retval);*/
623     }
624
625     return retval;
626 }
627
628 uint32_t
629 CycleTimerHelper::getCycleTimer()
630 {
631     uint64_t now = m_Parent.getCurrentTimeAsUsecs();
632     return getCycleTimer(now);
633 }
634
635 uint32_t
636 CycleTimerHelper::getCycleTimer(uint64_t now)
637 {
638     uint32_t ticks = getCycleTimerTicks(now);
639     uint32_t result = TICKS_TO_CYCLE_TIMER(ticks);
640 #ifdef DEBUG
641     if(CYCLE_TIMER_TO_TICKS(result) != ticks) {
642         debugWarning("Bad ctr conversion");
643     }
644 #endif
645     return result;
646 }
647
648 #else
649
650 float
651 CycleTimerHelper::getRate()
652 {
653     return getNominalRate();
654 }
655
656 float
657 CycleTimerHelper::getNominalRate()
658 {
659     float rate = ((double)TICKS_PER_SECOND) / 1000000.0;
660     return rate;
661 }
662
663 bool
664 CycleTimerHelper::Execute()
665 {
666     usleep(1000*1000);
667     return true;
668 }
669
670 uint32_t
671 CycleTimerHelper::getCycleTimerTicks()
672 {
673     return CYCLE_TIMER_TO_TICKS(getCycleTimer());
674 }
675
676 uint32_t
677 CycleTimerHelper::getCycleTimerTicks(uint64_t now)
678 {
679     debugWarning("not implemented!\n");
680     return getCycleTimerTicks();
681 }
682
683 uint32_t
684 CycleTimerHelper::getCycleTimer()
685 {
686     uint32_t cycle_timer;
687     uint64_t local_time;
688     readCycleTimerWithRetry(&cycle_timer, &local_time, 10);
689     return cycle_timer;
690 }
691
692 uint32_t
693 CycleTimerHelper::getCycleTimer(uint64_t now)
694 {
695     debugWarning("not implemented!\n");
696     return getCycleTimer();
697 }
698
699 #endif
700
701 bool
702 CycleTimerHelper::readCycleTimerWithRetry(uint32_t *cycle_timer, uint64_t *local_time, int ntries)
703 {
704     bool good=false;
705     int maxtries = ntries;
706
707     do {
708         // the ctr read can return 0 sometimes. if that happens, reread the ctr.
709         int maxtries2=ntries;
710         do {
711             if(!m_Parent.readCycleTimerReg(cycle_timer, local_time)) {
712                 debugError("Could not read cycle timer register\n");
713                 return false;
714             }
715             if (*cycle_timer == 0) {
716                 debugOutput(DEBUG_LEVEL_VERBOSE,
717                            "Bogus CTR: %08X on try %02d\n",
718                            *cycle_timer, maxtries2);
719             }
720         } while (*cycle_timer == 0 && maxtries2--);
721        
722         // catch bogus ctr reads (can happen)
723         uint64_t cycle_timer_ticks = CYCLE_TIMER_TO_TICKS(*cycle_timer);
724    
725         if (diffTicks(cycle_timer_ticks, m_cycle_timer_ticks_prev) < 0) {
726             debugOutput( DEBUG_LEVEL_VERY_VERBOSE,
727                         "non-monotonic CTR (try %02d): %llu -> %llu\n",
728                         maxtries, m_cycle_timer_ticks_prev, cycle_timer_ticks);
729             debugOutput( DEBUG_LEVEL_VERY_VERBOSE,
730                         "                            : %08X -> %08X\n",
731                         m_cycle_timer_prev, *cycle_timer);
732             debugOutput( DEBUG_LEVEL_VERY_VERBOSE,
733                         " current: %011llu (%03us %04ucy %04uticks)\n",
734                         cycle_timer_ticks,
735                         (unsigned int)TICKS_TO_SECS( cycle_timer_ticks ),
736                         (unsigned int)TICKS_TO_CYCLES( cycle_timer_ticks ),
737                         (unsigned int)TICKS_TO_OFFSET( cycle_timer_ticks ) );
738             debugOutput( DEBUG_LEVEL_VERY_VERBOSE,
739                         " prev   : %011llu (%03us %04ucy %04uticks)\n",
740                         m_cycle_timer_ticks_prev,
741                         (unsigned int)TICKS_TO_SECS( m_cycle_timer_ticks_prev ),
742                         (unsigned int)TICKS_TO_CYCLES( m_cycle_timer_ticks_prev ),
743                         (unsigned int)TICKS_TO_OFFSET( m_cycle_timer_ticks_prev ) );
744         } else {
745             good = true;
746             m_cycle_timer_prev = *cycle_timer;
747             m_cycle_timer_ticks_prev = cycle_timer_ticks;
748         }
749     } while (!good && maxtries--);
750     return true;
751 }
752
753 void
754 CycleTimerHelper::setVerboseLevel(int l)
755 {
756     setDebugLevel(l);
757 }
Note: See TracBrowser for help on using the browser.