root/trunk/libffado/src/libstreaming/motu/MotuReceiveStreamProcessor.cpp

Revision 750, 13.6 kB (checked in by ppalmers, 15 years ago)

Code refactoring. Tries to simplify things and tries to put all code where it belongs.

Line 
1 /*
2  * Copyright (C) 2005-2007 by Jonathan Woithe
3  * Copyright (C) 2005-2007 by Pieter Palmers
4  *
5  * This file is part of FFADO
6  * FFADO = Free Firewire (pro-)audio drivers for linux
7  *
8  * FFADO is based upon FreeBoB.
9  *
10  * This program is free software: you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 3 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
22  *
23  */
24
25 #include "MotuReceiveStreamProcessor.h"
26 #include "MotuPort.h"
27 #include "../StreamProcessorManager.h"
28 #include "devicemanager.h"
29
30 #include "libieee1394/ieee1394service.h"
31 #include "libieee1394/IsoHandlerManager.h"
32 #include "libieee1394/cycletimer.h"
33
34 #include <math.h>
35 #include <netinet/in.h>
36 #include <assert.h>
37
38 namespace Streaming {
39
40 // A macro to extract specific bits from a native endian quadlet
41 #define get_bits(_d,_start,_len) (((_d)>>((_start)-(_len)+1)) & ((1<<(_len))-1))
42
43 // Convert an SPH timestamp as received from the MOTU to a full timestamp in ticks.
44 static inline uint32_t sphRecvToFullTicks(uint32_t sph, uint32_t ct_now) {
45
46 uint32_t timestamp = CYCLE_TIMER_TO_TICKS(sph & 0x1ffffff);
47 uint32_t now_cycles = CYCLE_TIMER_GET_CYCLES(ct_now);
48
49 uint32_t ts_sec = CYCLE_TIMER_GET_SECS(ct_now);
50     // If the cycles have wrapped, correct ts_sec so it represents when timestamp
51     // was received.  The timestamps sent by the MOTU are always 1 or two cycles
52     // in advance of the cycle timer (reasons unknown at this stage).  In addition,
53     // iso buffering can delay the arrival of packets for quite a number of cycles
54     // (have seen a delay >12 cycles).
55     // Every so often we also see sph wrapping ahead of ct_now, so deal with that
56     // too.
57     if (CYCLE_TIMER_GET_CYCLES(sph) > now_cycles + 1000) {
58         if (ts_sec)
59             ts_sec--;
60         else
61             ts_sec = 127;
62     } else
63     if (now_cycles > CYCLE_TIMER_GET_CYCLES(sph) + 1000) {
64         if (ts_sec == 127)
65             ts_sec = 0;
66         else
67             ts_sec++;
68     }
69     return timestamp + ts_sec*TICKS_PER_SECOND;
70 }
71
72 MotuReceiveStreamProcessor::MotuReceiveStreamProcessor(FFADODevice &parent, unsigned int event_size)
73     : StreamProcessor(parent, ePT_Receive)
74     , m_event_size( event_size )
75 {}
76
77 unsigned int
78 MotuReceiveStreamProcessor::getMaxPacketSize() {
79     int framerate = m_Parent.getDeviceManager().getStreamProcessorManager().getNominalRate();
80     return framerate<=48000?616:(framerate<=96000?1032:1160);
81 }
82
83 unsigned int
84 MotuReceiveStreamProcessor::getNominalFramesPerPacket() {
85     int framerate = m_Parent.getDeviceManager().getStreamProcessorManager().getNominalRate();
86     return framerate<=48000?8:(framerate<=96000?16:32);
87 }
88
89 bool
90 MotuReceiveStreamProcessor::prepareChild() {
91     debugOutput( DEBUG_LEVEL_VERBOSE, "Preparing (%p)...\n", this);
92
93     // prepare the framerate estimate
94     // FIXME: not needed anymore?
95     //m_ticks_per_frame = (TICKS_PER_SECOND*1.0) / ((float)m_Parent.getDeviceManager().getStreamProcessorManager().getNominalRate());
96
97     return true;
98 }
99
100
101 /**
102  * Processes packet header to extract timestamps and check if the packet is valid
103  * @param data
104  * @param length
105  * @param channel
106  * @param tag
107  * @param sy
108  * @param cycle
109  * @param dropped
110  * @return
111  */
112 enum StreamProcessor::eChildReturnValue
113 MotuReceiveStreamProcessor::processPacketHeader(unsigned char *data, unsigned int length,
114                   unsigned char channel, unsigned char tag, unsigned char sy,
115                   unsigned int cycle, unsigned int dropped)
116 {
117     if (length > 8) {
118         // The iso data blocks from the MOTUs comprise a CIP-like
119         // header followed by a number of events (8 for 1x rates, 16
120         // for 2x rates, 32 for 4x rates).
121         quadlet_t *quadlet = (quadlet_t *)data;
122         unsigned int dbs = get_bits(ntohl(quadlet[0]), 23, 8);  // Size of one event in terms of fdf_size
123         unsigned int fdf_size = get_bits(ntohl(quadlet[1]), 23, 8) == 0x22 ? 32:0; // Event unit size in bits
124
125         // Don't even attempt to process a packet if it isn't what
126         // we expect from a MOTU.  Yes, an FDF value of 32 bears
127         // little relationship to the actual data (24 bit integer)
128         // sent by the MOTU - it's one of those areas where MOTU
129         // have taken a curious detour around the standards.
130         if (tag!=1 || fdf_size!=32) {
131             return eCRV_Invalid;
132         }
133
134         // put this after the check because event_length can become 0 on invalid packets
135         unsigned int event_length = (fdf_size * dbs) / 8;       // Event size in bytes
136         unsigned int n_events = (length-8) / event_length;
137
138         // Acquire the timestamp of the last frame in the packet just
139         // received.  Since every frame from the MOTU has its own timestamp
140         // we can just pick it straight from the packet.
141         uint32_t last_sph = ntohl(*(quadlet_t *)(data+8+(n_events-1)*event_length));
142         m_last_timestamp = sphRecvToFullTicks(last_sph, m_Parent.get1394Service().getCycleTimer());
143         return eCRV_OK;
144     } else {
145         return eCRV_Invalid;
146     }
147 }
148
149 /**
150  * extract the data from the packet
151  * @pre the IEC61883 packet is valid according to isValidPacket
152  * @param data
153  * @param length
154  * @param channel
155  * @param tag
156  * @param sy
157  * @param cycle
158  * @param dropped
159  * @return
160  */
161 enum StreamProcessor::eChildReturnValue
162 MotuReceiveStreamProcessor::processPacketData(unsigned char *data, unsigned int length,
163                   unsigned char channel, unsigned char tag, unsigned char sy,
164                   unsigned int cycle, unsigned int dropped_cycles) {
165     quadlet_t* quadlet = (quadlet_t*) data;
166
167     unsigned int dbs = get_bits(ntohl(quadlet[0]), 23, 8);  // Size of one event in terms of fdf_size
168     unsigned int fdf_size = get_bits(ntohl(quadlet[1]), 23, 8) == 0x22 ? 32:0; // Event unit size in bits
169     // this is only called for packets that return eCRV_OK on processPacketHeader
170     // so event_length won't become 0
171     unsigned int event_length = (fdf_size * dbs) / 8;       // Event size in bytes
172     unsigned int n_events = (length-8) / event_length;
173
174     // we have to keep in mind that there are also
175     // some packets buffered by the ISO layer,
176     // at most x=m_handler->getWakeupInterval()
177     // these contain at most x*syt_interval
178     // frames, meaning that we might receive
179     // this packet x*syt_interval*ticks_per_frame
180     // later than expected (the real receive time)
181     #ifdef DEBUG
182     if(isRunning()) {
183         debugOutput(DEBUG_LEVEL_VERY_VERBOSE,"STMP: %lluticks | tpf=%f\n",
184             m_last_timestamp, getTicksPerFrame());
185     }
186     #endif
187
188     if(m_data_buffer->writeFrames(n_events, (char *)(data+8), m_last_timestamp)) {
189         int dbc = get_bits(ntohl(quadlet[0]), 8, 8);
190         // process all ports that should be handled on a per-packet base
191         // this is MIDI for AMDTP (due to the need of DBC)
192         if(isRunning()) {
193             if (!decodePacketPorts((quadlet_t *)(data+8), n_events, dbc)) {
194                 debugWarning("Problem decoding Packet Ports\n");
195             }
196         }
197         return eCRV_OK;
198     } else {
199         return eCRV_XRun;
200     }
201 }
202
203 /***********************************************
204  * Encoding/Decoding API                       *
205  ***********************************************/
206 /**
207  * \brief write received events to the port ringbuffers.
208  */
209 bool MotuReceiveStreamProcessor::processReadBlock(char *data,
210                        unsigned int nevents, unsigned int offset)
211 {
212     bool no_problem=true;
213     for ( PortVectorIterator it = m_PeriodPorts.begin();
214           it != m_PeriodPorts.end();
215           ++it ) {
216         if((*it)->isDisabled()) {continue;};
217
218         //FIXME: make this into a static_cast when not DEBUG?
219         Port *port=dynamic_cast<Port *>(*it);
220
221         switch(port->getPortType()) {
222
223         case Port::E_Audio:
224             if(decodeMotuEventsToPort(static_cast<MotuAudioPort *>(*it), (quadlet_t *)data, offset, nevents)) {
225                 debugWarning("Could not decode packet data to port %s",(*it)->getName().c_str());
226                 no_problem=false;
227             }
228             break;
229         // midi is a packet based port, don't process
230         //    case MotuPortInfo::E_Midi:
231         //        break;
232
233         default: // ignore
234             break;
235         }
236     }
237     return no_problem;
238 }
239
240 /**
241  * @brief decode a packet for the packet-based ports
242  *
243  * @param data Packet data
244  * @param nevents number of events in data (including events of other ports & port types)
245  * @param dbc DataBlockCount value for this packet
246  * @return true if all successfull
247  */
248 bool MotuReceiveStreamProcessor::decodePacketPorts(quadlet_t *data, unsigned int nevents,
249         unsigned int dbc) {
250     bool ok=true;
251
252     // Use char here since the source address won't necessarily be
253     // aligned; use of an unaligned quadlet_t may cause issues on
254     // certain architectures.  Besides, the source for MIDI data going
255     // directly to the MOTU isn't structured in quadlets anyway; it is a
256     // sequence of 3 unaligned bytes.
257     unsigned char *src = NULL;
258
259     for ( PortVectorIterator it = m_PacketPorts.begin();
260         it != m_PacketPorts.end();
261         ++it ) {
262
263         Port *port=dynamic_cast<Port *>(*it);
264         assert(port); // this should not fail!!
265
266         // Currently the only packet type of events for MOTU
267         // is MIDI in mbla.  However in future control data
268         // might also be sent via "packet" events, so allow
269         // for this possible expansion.
270
271         // FIXME: MIDI input is completely untested at present.
272         switch (port->getPortType()) {
273             case Port::E_Midi: {
274                 MotuMidiPort *mp=static_cast<MotuMidiPort *>(*it);
275                 signed int sample;
276                 unsigned int j = 0;
277                 // Get MIDI bytes if present anywhere in the
278                 // packet.  MOTU MIDI data is sent using a
279                 // 3-byte sequence starting at the port's
280                 // position.  It's thought that there can never
281                 // be more than one MIDI byte per packet, but
282                 // for completeness we'll check the entire packet
283                 // anyway.
284                 src = (unsigned char *)data + mp->getPosition();
285                 while (j < nevents) {
286                     if (*src==0x01 && *(src+1)==0x00) {
287                         sample = *(src+2);
288                         if (!mp->writeEvent(&sample)) {
289                             debugWarning("MIDI packet port events lost\n");
290                             ok = false;
291                         }
292                     }
293                     j++;
294                     src += m_event_size;
295                 }
296                 break;
297             }
298             default:
299                 debugOutput(DEBUG_LEVEL_VERBOSE, "Unknown packet-type port format %d\n",port->getPortType());
300                 return ok;
301               }
302     }
303
304     return ok;
305 }
306
307 signed int MotuReceiveStreamProcessor::decodeMotuEventsToPort(MotuAudioPort *p,
308         quadlet_t *data, unsigned int offset, unsigned int nevents)
309 {
310     unsigned int j=0;
311
312     // Use char here since a port's source address won't necessarily be
313     // aligned; use of an unaligned quadlet_t may cause issues on
314     // certain architectures.  Besides, the source (data coming directly
315     // from the MOTU) isn't structured in quadlets anyway; it mainly
316     // consists of packed 24-bit integers.
317
318     unsigned char *src_data;
319     src_data = (unsigned char *)data + p->getPosition();
320
321     switch(p->getDataType()) {
322         default:
323         case Port::E_Int24:
324             {
325                 quadlet_t *buffer=(quadlet_t *)(p->getBufferAddress());
326
327                 assert(nevents + offset <= p->getBufferSize());
328
329                 // Offset is in frames, but each port is only a single
330                 // channel, so the number of frames is the same as the
331                 // number of quadlets to offset (assuming the port buffer
332                 // uses one quadlet per sample, which is the case currently).
333                 buffer+=offset;
334
335                 for(j = 0; j < nevents; j += 1) { // Decode nsamples
336                     *buffer = (*src_data<<16)+(*(src_data+1)<<8)+*(src_data+2);
337                     // Sign-extend highest bit of 24-bit int.
338                     // FIXME: this isn't strictly needed since E_Int24 is a 24-bit,
339                     // but doing so shouldn't break anything and makes the data
340                     // easier to deal with during debugging.
341                     if (*src_data & 0x80)
342                         *buffer |= 0xff000000;
343
344                     buffer++;
345                     src_data+=m_event_size;
346                 }
347             }
348             break;
349         case Port::E_Float:
350             {
351                 const float multiplier = 1.0f / (float)(0x7FFFFF);
352                 float *buffer=(float *)(p->getBufferAddress());
353
354                 assert(nevents + offset <= p->getBufferSize());
355
356                 buffer+=offset;
357
358                 for(j = 0; j < nevents; j += 1) { // decode max nsamples
359
360                     unsigned int v = (*src_data<<16)+(*(src_data+1)<<8)+*(src_data+2);
361
362                     // sign-extend highest bit of 24-bit int
363                     int tmp = (int)(v << 8) / 256;
364
365                     *buffer = tmp * multiplier;
366
367                     buffer++;
368                     src_data+=m_event_size;
369                 }
370             }
371             break;
372     }
373
374     return 0;
375 }
376
377 } // end of namespace Streaming
Note: See TracBrowser for help on using the browser.